Aaronson, S. (2013). Why philosophers should care about computational complexity. In Computability: Turing, Gödel, Church, and Beyond (pp. 261-328). MIT Press.
Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., … & Moody, D. (2022). Status report on the second round of the NIST post-quantum cryptography standardization process. NIST Internal Report, 8413.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., … & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography. Nature, 549(7671), 188-194.
Campagna, M., Chen, L., Dagdelen, Ö., Ding, J., Fernick, J., Gisin, N., … & Yang, B. Y. (2022). Quantum computational advantage. Nature Reviews Physics, 4(1), 5-23.
Chen, L., Jordan, S., Liu, Y. K., Moody, D., Peralta, R., Perlner, R., & Smith-Tone, D. (2017). Report on post-quantum cryptography (NIST Internal Report 8105). National Institute of Standards and Technology.
Ding, J., & Petzoldt, A. (2021). Current state of quantum computing and future challenges. China Communications, 18(8), 1-15.
Grassl, M., Langenberg, B., Roetteler, M., & Steinwandt, R. (2016). Applying Grover’s algorithm to AES: quantum resource estimates. In International Workshop on Post-Quantum Cryptography (pp. 29-43). Springer.
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the 28th annual ACM symposium on Theory of Computing (pp. 212-219).
Mosca, M. (2018). Quantum-resistant cryptography: Key challenges and opportunities. In Proceedings of the International Conference on Security and Privacy in Communication Systems (pp. 1-15). Springer.
Mosca, M., & Piani, M. (2019). Quantum computing: Legal and policy challenges. Nature Reviews Physics, 1(8), 480-481.
Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303-332.